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Abstract: Negation in language, far from being a simple representative of standard bivalent
negation, has its own idiosyncrasies. The present study is an attempt at subsuming many or most
of these under the rubric of universe (Un) restriction, meaning that natural language negation
selects different complements under different conditions. Un restriction is manifest in three
different ways: static, dynamic and developmental. The focus of this study is on the static form of
Un restriction, leading to an investigation of the relation between unrestricted standard modern
predicate logic on the one hand and the classic Square of Opposition on the other. It is argued
further that the addition of a ‘strict’ existential quantifier ‘some but not all’ leads to increased
insight into the matter.

1. Introduction

Although there can be no doubt about the universal mathematical validity of standard
modern predicate logic (SMPL), the status of uniqueness and untouchability it has
acquired over the past century is unwarranted and has proved an obstacle to deeper
insights into the richness of logical space and in particular its relation with language and
cognition. Human cognition, with language in its wake, has made a far more ingenious use
of the possibilities afforded by logical space than present-day logicians, semanticists and
psychologists have given it credit for. The present study explores the way in which
cognition has found its way in logical space, with an emphasis on the one outstanding
feature of the resulting logic of natural language (LNL), its tendency to reduce SMPL’s
infinite universe (Un®)of all metaphysically possible situations to functionally manageable
proportions. Whereas SMPL operates in terms of one unchangeable and infinite universe
of discourse, LNL operates within universes that are, for obvious functional reasons,
restricted in a variety of ways. Although this principle was already emphasized at great
length in the chapters 2 and 4 of De Morgan (1847), it is only now that the various aspects
of this basic fact are beginning to come to light, and as this is happening, it is becoming
clear that the well-known discrepancies between SMPL and natural logical intuitions are
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to be accounted for in terms of Un restriction, rather than in terms of pragmatic (Gricean)
principles, as is commonly held nowadays.

The phenomenon of Un restriction manifests itself, as far as can be seen today, in three
distinct but interrelated ways: statically, dynamically and developmentally. The common
thread to all three forms of Un restriction is the way negation selects a complement in any
given circumstance: the complement selected by the negation will be more restricted as
Un gets more constrained. In the present study it is only the static aspect that is
considered and analysed. Yet, for the ideas presented here to be seen in their proper
context, a few words must be said about dynamic and developmental Un restriction.

Dynamic Un restriction is present mainly in the phenomenon of presupposition, which
has been studied systematically only since the middle of last century. The main feature of
presuppositions as semantic properties of (type-level) sentences is that they are discourse
restrictors: a sentence S presupposing P is usable only in discourse (sub)domains D where
P has been explicitly added or can be supplemented on grounds of situational or world
knowledge. If D does not meet this condition, S ‘bounces’. The behaviour of negation
shows that this D-restriction is at the same time a Un restriction: the restricted D acts as
the restricted Un in the running discourse, which makes the negation presupposition-
preserving (Seuren 1972). In fact, it was this property of negation in natural language that
gave rise to presupposition theory. Another indicator is conjunction: the difference
between He went to Spain and got rich on the one hand and He got rich and went to Spain
on the other is precisely that the second sentence in each case is interpreted in a Un to
which the first sentence has been added. Iconicity, usually adduced as a ground of
explanation, is merely coincidental: the real reason for the difference lies in the
progressive restriction of Un as the discourse goes on. This form of Un restriction is called
dynamic because it makes Un follow the ad hoc movements of any running discourse. |
will not go into the complex issues related to presupposition theory in this brief study. For
detailed discussion, analyses and arguments see, for example, Seuren (1985, 2010).

Developmental Un restriction is a phenomenon that has only recently become the
object of research. The context of this research is formed by the question of why some
negative lexicalizations are systematically absent from the lexicons of natural languages. It
started with an observation by Thomas Aquinas (1225-1274) in his Expositio
Peryermeneias lib. 1.1.10, n. 13 (Horn 1972, Ch. 4) that while logical some has a negative
counterpart in no, all lacks such a lexical counterpart. This fact caught fire recently,
resulting in a spate of publications (e.g. Blanché 1953:95-6; Horn 1989:253; Lobner
1990:95; Levinson 2000:69-71), where the observation was widened to the truth
functions and the epistemic modalities. Or has a corresponding negative neither...nor but
and lacks a negative counterpart (*nand only occurs in the technical vocabulary of
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computer science); epistemic possible has a negative opposite in epistemic impossible but
epistemic necessary lacks an epistemic negative counterpart (unnecessary is not
epistemic). In all such cases, it is the contradictory of the element in the A-position of the
Square structure (consisting of the proposition types <A, I, =l, =A>) these items fit into
that withstands lexicalization. This fact has been dubbed the unlexicalisability of the O
corner. Also, for example, the quadruple <order, permit, forbid, *non-order>, which
logically corresponds to the traditional Square: order entails permit, forbid is the Un-
restricted contradictory of permit and *non-order of order, order and forbid are contraries
and, finally, permit and *non-order are subcontraries. Typically, there is no lexical item for
the O-corner item *non-order in the logically expected sense of ‘either forbid or permit’.
And analogously for <cause, allow, prevent, *non-cause> in the logic of causality.

It was found recently (Jaspers 2012; Seuren & Jaspers, forthcoming; Seuren,
forthcoming) that the regularity pervades the lexicon as a whole: in any lexical assembly
whose members can be arranged in the form of the classic Square, the O position remains
unlexicalised. To mention just one example out of a myriad, in Ancient Greek, which has a
word Athenian, entailing Greek, and a word barbarian for ‘non-Greek’, no word exists for
the O-corner item ‘non-Athenian’ covering both non-Athenian Greeks and barbarians. This
non-lexicalisability of items in the O position appears to be universal for ordinary, non-
technical language.

This regularity is reinforced when the Square is extended with two additional vertices,
one for the strict existential quantifier ‘some but not all’ (the Y-type) and one for its
contradictory (the =Y-type, often called U). As shown below, this extends the Square to
the logical Hexagon, as proposed in Jacoby (1950, 1960), Sesmat (1951), Blanché (1953,
1966). In the Hexagon it is not only the =A (=0) position but also the =Y (=U) position that
is unlexicalisable. Moreover, the (unlexicalised) negation of all, as in Not all children
laughed, takes one to ‘some but not all children laughed’, rather than to the expected
‘either no or some but not all children laughed’.

In order to account for this class of observations, a cognitive mechanism is postulated
(Seuren & Jaspers, forthcoming; Seuren, forthcoming) in virtue of which Un is stepwise
and recursively restricted in the course of early cognitive development—as a result of
increased cognitive activity—so that the (default) negation selects different complements
according to the degree to which the logical system has been developed. Assume that the
young child’s very first distinction, in the world of its experiences, will be between there
being nothing and there being something. Subsequently, the child will discover that not all
entities (‘somethings’) are equal, as some have this and others that property. Then, when
combining properties, the child discovers that, given entities with property R, some or
none of these also have property M, thus establishing the first or primary axis of a
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predicate-logical system, consisting of the opposition between the proposition types |
(Some R is M) and =l (No R is M). But this mental operation takes place within, or on the
basis of, the class of experiences that there are some entities with the property R. Then,
after a number of experiences of “Some R is M’, the child will jump to either ‘All R is M’ or
‘Not all R is M’. But this distinction is made within the class of experiences that (at least)
some R is M. This throws some light on the fact that a sentence such as Not all children
laughed is naturally interpreted under the assumption that at least some children
laughed—that is, as ‘some children laughed and some did not’, the Y-type.

The matter is complicated by the fact that the entire hypothesis of static, dynamic and
developmental Un restriction is subject to the caveat that culture-induced intellectual
development is capable of undoing Un restrictions, arriving, in the end, at a totally
unrestricted, contingency-free logical system such as SMPL, which took over twenty
centuries of culture to come about and which is rightly regarded as an intellectual
triumph. The Square (in the form in which it was handed down by tradition) is an earlier,
incomplete, product of such culture-induced undoing of Un restriction, as it dispensed
with the restrictions imposed by developmental and dynamic Un restriction, but failed to
remove the static restriction that the R-class must be nonnull.

As has been said, however, it is not my purpose here to elaborate the details of
dynamic and developmental Un restriction, but they form the background to the more
precise analysis of static Un restriction which is the topic of the present study.

2. The null R-class in standard modern predicate logic

From a strictly logical point of view, as is well known, the Square suffers from the defect
that it becomes inconsistent when applied to cases where the class denoted by the
subject term (the R-class) is empty: the Square is valid only for cases where the R-class is
nonnull. This defect, known as Undue Existential Import (UEIl), is remedied by SMPL,
which, as befits an ideal logical system, is independent of contingencies and valid in an
infinite Un®, encompassing all possible situations, including those where the R-class is
null. In this section, | argue that the Square’s singling out of the condition that the R-class
be nonnull (a) is not an arbitrary defect but cuts into SMPL at a mathematically well-
defined joint in the system, (b) is motivated by the fact that it maximally increases the
logical power of the system, and (c) makes perfect sense in a reconstruction of the logic of
natural cognition, as the null set does not seem to have cognitive reality (Seuren 2010, Ch.
3). These points have never been observed, let alone been properly appreciated.
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Both the Square and SMPL are predicated on two types of quantified propositions, type
A (All R is M) and type | (At least some R is M), where the variables R (restrictor predicate)
and M (matrix predicate) range, in principle, over all first order predicates. In addition,
both systems incorporate an external and an internal negation. The former negates entire
propositional types and is symbolized here as - prefixed to the type name. The latter
negates the propositional function in M-position and is symbolized as * suffixed to the
type name. This gives eight type names, as shown in Table 1.

Table 1
type name linguistic expression formal language
A AllRis M Vx(Rx,Mx)
| At least some Ris M Ix(Rx,MXx)
-A Not all R is M =[Vx(Rx,Mx)]
=l NoRis M =[3x(Rx,Mx)]
A* AllRis not M Vx(Rx,~Mx)
I* At least some Ris not M Ix(Rx,~Mx)
-A* Not all Ris not M =[Vx(Rx,~MXx]]
-I* No Ris not M =[3x(Rx,~MXx)]

The type names are merely a convenient shorthand; they are not meant to be a formal
logical language. The logical language used throughout this study is, in principle, that of
the theory of generalized quantifiers, where the quantifiers are taken to be binary higher-
order predicates, as exemplified in the column “formal language” of Table 1. Any claim
that SMPL is superior to the Square in that the former is able to express multiple internal
guantification, as in Some boys admire all popsingers, while the latter lacks that expressive
power, is thus false, as it is based on a confusion of the logical system itself on the one
hand and the formal language used on the other. In principle, the same formal language
can be used for both SMPL and the Square, or indeed any other variety of predicate logic.

In the language used, the quantifiers V and 3 are higher order predicates over pairs of
first-order sets. Rx and Mx are first-order set-denoting predicates (propositional
functions). The quantifying predicates V and 3 are semantically defined as in (1) (the
variable x binds the x in Rx and Mx; [[P] stands for the appropriate order extension of any
predicate P in the universe of entities Ent):
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1) a [vI={<[RLIMI> | [RI< [MI}
b. [3]= {<IRLIMI> | [RI~ IM] = @}

That is, All R is M is read as ‘the class of Rs is included in the class of Ms’, while Some R is
M is read as ‘there is a nonnull intersection between the class of Rs and the class of Ms’.

Given (1), A= -I* and | = -A*. These equivalences are known as the Conversions, and
the quantifiers V and 3 are commonly called duals. The proof is easy:

for A=-1*: Ais true iff [R] < [MIL -1* is true iff [RI~[MI= @; [RI< [MIand [RI~IMI= @
express the same set-theoretic situation; hence, A = -I*.

for 1 = =A*: lis true iff [R]1~ [M] # @; -A* is true iff [R] zIMI; [RI1~ [M] # @ and [R]

joa [mI express the same set-theoretic situation; hence | = -A*.

The Conversions define SMPL. Beyond the Conversions, A and | are logically independent
in SMPL in the sense that they can be true or false independently of each other (provided
neither A nor | is either necessarily true or necessarily false). There are thus, for
contingent A and |, four possible valuations (situations) in the universe Un of admissible
valuations, as shown in the first two rows of Table 2 (‘T" stands for True; ‘F’ for False). The
six remaining rows follow from the first two in virtue of the truth-functional definition of
standard negation, whether external or internal.
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Table 2
Un: 1 2 3 4
A F F T
| T F ;
-A F T T F
-l F F T T
A* F F T T
I* F T T F
-A* T T F F
1% T F F T
Conditions for T: | [Rl< [MI Rl [M] [Rlz [M] [R]=9
RInIMI#@ | [RInIM]=@ [RI~ VI =@

Each of the four valuations in Table 2 specifies a truth value (T or F) for each of the eight
proposition types in SMPL, plus the conditions to be fulfilled for truth in each valuation.
These truth conditions are simply derived from the satisfaction conditions specified for
the quantifying predicates V and 3 in (1) above. For valuation 4, this condition is the
conjunction of [R] = [M] (since A is true) and [R] ~ [MI = @ (since 1 is false), which
amounts to the simple condition that [R]] = @. That this is so is easily shown: for any
arbitrary [R]and [M] if [R] = @, [R] = IMI and [R] ~ [MI = @; conversely, if [Rl = [M]and
[RI ~ [M] = @; then [R] = @. Note that the conditions for truth in the valuations 1,2 and 3
all entail that [[R] = @.

This fact has not or hardly received any attention in the literature, yet it is remarkable in
that situations where [[R] = @ form the crucial difference between SMPL and the Square:
the two systems are identical but for the fact that SMPL (in conformity with standard set
theory) treats A-type propositions as true when [[R] = @, while the Square ignores such
situations. This shows that leaving cases where [[R]] = @ out of consideration is not an
arbitrary decision but cuts into SMPL at a natural joint (a fact that does not hold for
Aristotelian-Abelardian logic; see below). Dropping cases where [R]]= @ from Un creates a
wealth of new logical relations giving rise to the Square and giving the system a logical
power unsurpassed by any other known logical system in terms of the eight proposition



289

types defined in Table 1. Moreover, in the context of a reconstruction of the natural
logical powers of the human race it is relevant to observe that leaving out cases where [R]
= @ is cognitively plausible in that what is known in mathematics as the null set seems to
lack cognitive reality in unsophisticated humans, being the product of highly developed
mathematical abstraction (Seuren 2010, Ch. 3).

Table 2 can be converted into a diagram as in Figure 1, consisting of four concentric
spaces, each space being marked for the proposition types that are true in it. This way of
representing logical systems is called Valuation Space (VS) analysis and the corresponding
diagrams are called VS-models. The following section expands on these notions.

[[R]]=9

Figure 1 VS-model of SMPL

3. Valuation Space analysis

Before looking more closely into the logical properties of the Square, let us first consider
the proof method for logical systems called Valuation Space analysis, already instantiated
in Table 2 and Figure 1 above. Let /P/ denote the Valuation Space (VS) of any proposition
(or proposition type) P, that is, the set of situations/valuations in the universe Un of
possible situations in which P is true, given the propositions (or proposition types)
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considered, under standard bivalence (in the present study).' The basic way of defining a
situation is by means of assigning truth values to the (types of) propositions in the
language fragment L considered. Thus, if L contains exactly three logically independent
propositions A, B and C, Un consists of eight (23) possible situations/valuations (see Table
3). (If L consists of 25 logically independent propositions, the number of valuations is 225,
or 33,554,432.) Each of the situations/ valuations 1-8 is an assignment of truth values to
A, B and C. The logical compositions follow automatically, given the definitions of the
propositional operators. Thus, the VS /A/ of proposition A in Un as specified in Table 3 is
{1,3,5,7}, /B/ ={1,2,5,6}, etc. (For more elaborate discussion see Seuren 2013, Ch. 8.)

Table 3

Un: 1 2 3 4 5 6 7 8

A T F T F T F T F

B T T F F T T F F

C T T T T F F F F

ﬁ

AnB T F F F T F F F

AVB T T T F T T T F

AvC T T T T T F T F

etc.

The diagrammatic representation of SMPL given in Figure 1 can thus be interpreted as a

VS-model for SMPL, with the four spaces corresponding to the four valuations of Table 2.
When the members of a pair of propositions considered are not logically independent,

so that there exists a logical relation between them, some situations are inadmissible. For

example, if B entails C (B |- C), all situations in which B is valued true and C is valued false

are inadmissible, which eliminates the situations 5 and 6 from the Un of Table 3. A
proposition P is necessarily true in Un iff /P/ = Un; P is necessarily false in Un iff /P/ = @.
Thus, if A is necessarily true, the valuations 2, 4, 6 and 8 are inadmissible and are removed
from Un. If A is necessarily false, the valuations 1, 3, 5 and 7 are inadmissible and thus
removed.

Un # @ iff L contains at least one proposition P. If L contains precisely one proposition P
and P is contingent, there are two admissible situations, one in which P is true and one in
which P is false, but if P is either necessarily true or necessarily false, there is only one

! Both the notion and the term Valuation Space were introduced in Van Fraassen (1971),

where, however, the notion was left underdeveloped.
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admissible situation in the corresponding Un. Un = @ iff L = @ (L contains no proposition).
No logical relation holds when Un = @.

4. Constructing the Square from SMPL

Table 4 lists the logical relations taken into account in the present study (plus logical
independence) defined for arbitrary propositions P and Q. Note that SMPL contains only
the relations of equivalence and contradictoriness. The remaining relations become
relevant in the context of the construction of the Square and the Logical Hexagon. To
enhance formal precision, the relations of entailment, contrariety and subcontrariety have
each been given a strict counterpart, imposing further conditions and corresponding more
closely to the intuitive concepts. The ‘strict’ relations all ‘meta-entail’ their namesakes
without the qualification ‘strict’, since the former are subject to an extra condition. The
relations of entailment, contrariety and sub-contrariety as they hold in the logical systems
discussed here are all of the ‘strict’ kind, provided the proposition types involved are
neither necessarily true nor necessarily false (see below).

Table 4
Relation Symbol Definition
entailment PLQ /Pl < /Q/
strict entailment PllQ /P /Q/
equivalence P=Q /P/=/Q/
contrariety P><Q /P/N/Q/=0
strict contrariety Pl><Q /P/ " /Q/=@;/P/U/Q/#Un
subcontrariety P><Q /P/ U /Q/=Un
strict subcontrariety PI><Q /P/u/Q/=Un;/P/N/Q/ %@
contradictoriness P>|<Q /P/ N /Q/=@;/P/U/Q/=Un
(logical independence no symbol PInIQ/ 2@ #/P/#/Q/; /P/ U /Q/#Un)

The construction of the classic Square from SMPL results from leaving out of
consideration valuation 4 of Table 1, thus reducing Un to {1,2,3}. It is sometimes said that
all that is needed to make the Square logically sound is replacing the standard definition of
VY as given in(1a) with (2), which adds the condition that [R] # @:

2) [vI={<[RIIMI> | [RIc [MIand [R]+ @}
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Yet, although this removes the defect of UEI, it also produces a logic that is different from
both SMPL and the Square. The added condition that [R]# @ makes A false when [R] = @,
so that space 4 is not left blank but reserved for -=A, =A*, =l and =I*. This gives rise to a
fully consistent alternative predicate logic, which | have dubbed Aristotelian-Abelardian
predicate logic (AAPL), as it reflects Aristotle’s original system, rediscovered and
reconstructed by the medieval French philosopher Peter Abelard (1079-1142) (see Seuren
2010, Ch. 5; 2013, Section 8.4.1). In AAPL (see Figure 2), the Conversions do not hold but

are replaced with the one-way (strict) entailments A |}~ =I* and I |- -A*. Moreover,
subcontrariety disappears: in AAPL: | and I* are no longer subcontraries but are logically
independent, because, as pointedly observed by Abelard, if [R] = @, both I and I* are false.
The construction of the classic Square from SMPL is thus brought about not by adding the
condition that [R] # @ to the semantics of ¥ but by restricting Un to those situations
where [[R] = @.

[[Rl]=9

Figure 2 The VS-model for AAPL

When the situations where [[R] = @ are removed from Un and neither A nor | is either
necessarily true or necessarily false, the Conversions are unaffected and, in addition:



293

A ||-1, since /A/ ={1}and /I/ ={1,2} and {1} = {1,2};
A |>< -, since {/A/ ={1}and /-1/ = {3} and 1} " {3} = @ and {1} U {3} # Un;
-1 ||--A, since /-I/ = {3}, and /-A/ = {2,3} and {3} = {2,3};

I [>< I* since /I/ ={1,2} and /1*/ ={2,3}and {1,2} U {2,3} =Un and {1,2} N {2,3} # @.

The picture is modified, though in principle kept intact, when one or more of the
proposition types involved is either necessarily true or necessarily false. For example, if A
is necessarily true, the spaces 2 and 3 are removed from the Un of both SMPL and the
Square, leaving only the spaces 1 and 4 for SMPL and only space 1 for the Square. This has
the effect of strengthening some of the logical relations involved or of creating new logical
relations. In SMPL, for example, although contingent A and | are logically independent, |

|- A when A is necessarily true (as in All boys are male), since, in that case, Un = {1,4}, /I/
= {1} and /A/ = {1,4}. Or, in the Square, when A is necessarily true, so that Un is restricted
to just {1}, A=1since /A/ ={1}and /I/ = {1}, and A >|< =l since /A/ = {1} and /-I/ = @, and
likewise I >|< I* since /I/ = {1} and /1*/ = @. The subaltern entailments in the Square from

A to l and from =l to -A (= I*) are thus strengthened to equivalences, and both contrariety
and subcontrariety are strengthened to contradictoriness. This leaves the Square intact for
the non-strict versions of the relations involved. In what follows, however, | will leave
extreme cases where a proposition type is either necessarily true or necessarily false out
of consideration and limit the discussion to contingent A and I, as extreme cases, with
their specific logical properties, fall outside LNL (Seuren 2010, Ch. 3).

The logical relations of the Square are standardly represented in the form of the classic
Square (hence its name), as in Figure 3—b. (In polygonal representations such as Figure 3—
b, > stands for entailment, ‘=* for equivalence, ‘C’ for contrariety, ‘SC’ for subcontrariety,
and a cross or star in the middle for contradictoriness.) We can construct a VS-model for
the Square merely by taking Figure 1 and leaving space 4 empty, as in Figure 3—a (or by
leaving out space 4, as in Figure 6-a). To facilitate checking the logical relations at issue,
each proposition type in Figure 3—b has its VS specified for it.
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b.
[[R]=9
A=Al* =l = A*

i c (3}

A\ A4
SC
| =-A* =A=*
{1,2} {2,3}

Figure 3 (a) VS-model and (b) square representation of the Square

5. Adding the Y-type

The 19th-century Scottish philosopher Sir William Hamilton (1788-1856) proposed
(Hamilton 1866) to interpret the natural language word some as ‘some but not all’, rather
than as the standard ‘some perhaps all’ of SMPL and the Square.? In this he was followed
by the Danish linguist Otto Jespersen (1860-1943) in Jespersen (1917, 1924). | call this
more restricted form of existential quantification strict existential quantification and,
following a tradition established by the French philosopher Robert Blanché (1898-1975), |
use the type name Y for the corresponding proposition type. The strict existential

guantifier, which | write as |EI, is defined as follows:

@) [31=A{<IRIIM> | [RI~ IMI# @, [RI< IMI}

2 Hamilton’s logic is characterized further by his theory of so-called ‘quantification of the

predicate’, in virtue of which a sentence like All men are mortal should be analyzed as ‘all men are
some mortal’. This aspect of Hamilton’s logic is left out of account here, as it reflects a notion of
logical structure that is totally at odds with the approach followed here and does not seem to
contribute to a better insight into the logical aspects of language or cognition.
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Hamilton’s proposal, which was rejected and even treated with derision by mainstream
logicians, amounts to a triadic predicate logic consisting of the three mutually contrary
proposition types A, -l and Y, forming what is known as the Hamiltonian Triangle of
Contraries.

Contrary to the now widespread assumption that the interpretation ‘some but not all’
is a pragmatic derivate from the standard ‘some perhaps all’, | submit, following Hamilton
(1866), Ginzberg (1913), Jespersen (1917, 1924), Jacoby (1950, 1960), Sesmat (1951),

Blanché (1953, 1966), that |3 deserves a place in predicate logic on a par with V and 3. In
fact, the addition of the Y-type (plus its negative compositions) and the corresponding
quantifier |3 makes for a nontrivial enrichment of both SMPL and the Square, while

opening up new possibilities for the study of the natural logic of language and cognition
(see Seuren & Jaspers, forthcoming; Seuren, forthcoming). The addition to Table 1 of the
Y-type plus its three negative compositions as specified in Table 5 thus increases the
number of proposition types from 8 to 12. (NB: U is often, following Blanché 1953, 1966,
used for =Y = -Y*).

Table 5
type name linguistic expression formal language
Y Some but not all R is M |3(Rx,Mx)
=Y (= U) AllRisM orRNoRisM -[|3(Rx,Mx)]
Y* Some but not all R is not M |3(Rx,~MXx)
-Y* (= U) AllRisM orRNoRisM =[|3(Rx,~Mx)]

Given the satisfaction condition for |3 as specified in (3) above, it follows that Y is

valued T in valuation 2 and F in the valuations 1, 3 and 4 of Table 2 above. Moreover, it
follows that Y = Y*, since if [R] ~ [MI # @ and [R] < [M] then [R] ~IMI # @ and [R] &
[[M]], and vice versa. Consequently, =Y = =Y*,

The extension of SMPL with Y and its negative compositions results in the VS-model of
SMPL in Figure 4. Figure 5 shows (a) the dismantled square of standard SMPL, consisting
of only the Conversions and the contradictories of the terms concerned, and (b) the
incomplete hexagon resulting from the addition of Y and its negative compositions, as it
can be read off Figure 4.
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Figure 4 The VS-model for SMPL extended with Y and its negative compositions

d. b. AY = Y* 1,3,4)
A= = A=l I=A
1,4 (3,4} =-l* Al = A*
11,4} oA o
I =-A* sA=I*
{1,2} {2,3} I=-A* -A=I*
{1,2} {2,3}
Y=Y* {2}

Figure 5 The dismantled square for SMPL and the incomplete hexagon resulting from
the incorporation of Y and its negative compositions

Figure 5 shows how the incorporation of Y and its negative compositions leads to a
considerable enrichment of SMPL. An even greater enrichment results if the Square is the
beneficiary of the incorporation of Y and its negative compositions—that is, when space 4
is disregarded. Whereas SMPL in its original form consists of only the Conversions, and the
addition of Y and its negative compositions to SMPL greatly increases the number of
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instantiated logical relations, as shown in Figure 5-b, the incorporation of Y and its
negative compositions into the Square makes the hexagon complete, yielding the Logical
Hexagon as envisaged by Jacoby, Sesmat and Blanché (Figure 6—b). Disregarding cases
where [R] = @ is thus seen to lead systematically to what is probably (failing a theory of
‘logical power’) a maximal increase in the logical power of the system at hand.

b_ aY = aY* {1,3}

A =Al* -l = A*

{1} C {3}

V %
cC

| ==A* i =

{1,2} {2,3}

Y=Y* {2}

Figure 6 VS-model and corresponding polygonal representation for the Hexagon

One notes that the Logical Hexagon contains the Hamiltonian Triangle of Contraries
<A)Y,=I>, the Triangle of Subcontraries <l,~A,-Y>, the classic Aristotelian-Boethian Square
of Opposition <A,l,=1,-A> and thus SMPL to the extent that it is valid for the spaces 1,2
and 3. The addition of the Y-type plus its negative compositions to these logical systems is
thus seen to make good logical sense.?

3 This was already seen by S. Ginzberg (1913), whose arguments were sharper than Hamilton’s.

(It has so far proved impossible to trace this author, unless he is identical—which is doubtful—
with the Salomon or Simon Ginzberg who acted as Albert Einstein’s ad hoc secretary during the
latter’s trip through the United States in 1921.) Ginzberg’s little article provoked an acerbic
reaction by Louis Couturat (1868-1914), a well-known follower of Russell, who wrote (Couturat
1913: 256; translation mine): “The problem raised by Mr Ginzberg [...] was solved a long time ago
by formal logicians in a way that seems to me to be satisfactory and decisive.” Ginzberg retorted
(Ginzberg 1914) that no logical principle prohibits the introduction of a quantifier meaning ‘some
but not all’ and that such a quantifier, being more precise than ‘some perhaps all’, has certain
functional advantages. In his short final repartee (Couturat 1914), Couturat had nothing better to
say than (translation mine) “[O]ne steps out of the framework of classical logic the moment one
tries to make propositions ‘quantitatively’ precise. One may well elaborate alternative legitimate
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The Y-type plus its negative compositions may also be incorporated into AAPL. Doing so
leads to the VS-model shown in Figure 7. A polygonal representation corresponding to the
VS-model may also be set up, but, due to the scarcity of equivalences, this proves
unrewarding.

[[Rl]=9

Figure 7 The VS-model for AAPL extended with Y and its negative compositions

6. Conclusion and further perspectives

The question of what logical system is best taken to correspond to natural human logic is
still far removed from a final answer. But a few things are clear. First, the question is of an
empirical nature. One empirical touchstone is formed by intuitive judgements of
necessary consequence and of consistency through texts, just as intuitive judgements
regarding given categories of data are an empirical touchstone for many other human
sciences, such as linguistics. Other such empirical touchstones may be found in

and consistent systems, but one cannot make the classical system more ‘perfect’ by introducing
greater ‘precision’, which is alien to its spirit.” It should be clear that this final reply by Couturat
was gratuitous and that, far from being alien to it, it is entirely in the spirit of the “classical system”
to make it more perfect by introducing greater precision.
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psychological experiments, but, to my knowledge, none have so far been carried out or
devised.

Then, it seems that Un restriction must be taken to be a central feature of LNL. In the
present study, static Un restriction has been the central topic, but the results presented
here, interesting and intriguing as they may be, are far from complete: there are no doubt
further aspects to this form of Un restriction that need elaboration and elucidation. The
dynamic (presuppositional) and developmental (cognitive) forms of Un restriction also
need to be investigated at greater depth and confirmed, if possible, by experimental
results. And, importantly, a clearer picture is needed of how these three forms of Un
restriction relate to each other and collaborate to secure consistency in texts.

This, it seems to me, is one fruitful way of going about a long overdue investigation of
the relation between logic on the one hand and the human cognitive-linguistic complex on
the other. Another fruitful way is the precise investigation of phenomena of logical scope,
which have been given a very poor treatment in current linguistic theories even though
their repercussions on the study of language in a general sense are momentous and all-
pervasive. The neglect of logic that has characterized the study of language and of the
mind over the past half century has done these disciplines no good.
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